
C++: Casts

Miro Jurǐsić

meeroh@meeroh.org

Why cast?

• a.k.a. coercion

• Tell the compiler: ”You are wrong.”

• Tell the compiler: ”I know something you don’t know.”

• Casts are difficult to maintain

• Most of the time, there are better ways to accomplish the same goal

1

C casts in C++

int x = -10;

unsigned int y = (int) x; // Arithmetic conversion

int* xp = &x;

double* yp = (double*) xp; // Pointer coercion

int z = 10;

int* zp = (int*) z; // Coercion

const int w = 10;

int* wp = (int *) &w; // Loss of constness

*w = 20;

BaseClass* bp;

DerivedClass* dp = (DerivedClass*) bp; // Casting down a hierarchy

etc.

2

Casts in C++

Distinguish four types of casts

• changes in constness (and volatileness)

• allowed compile-time conversions

• runtime conversions

• other (typically non-portable) conversions

• new cast syntax: verbose and easy to spot

int x = 5;

char y = static_cast <char> (x); // Arithmetic conversion

int* xp = &x;

double* yp = reinterpret_cast <double*> (xp); // Pointer coercion

int z = 10;

int* zp = reinterpret_cast <int*> (z); // Coercion

3

const int w = 10;

int* wp = const_cast <int*> (&w); // Loss of constness

*w = 20;

BaseClass* bp;

DerivedClass* dp = dynamic_cast <DerivedClass*> (bp); // Casting down a hierarchy

4

const cast

Remove const or volatile qualifier from a type

const int w = 10;

int* wp = const_cast <int *> (&w);

const int w = 10;

const int* wp = &w;

const int** wpp = ℘

int** wpp2 = const_cast <int**> (wpp);

const int& wr = w

int& wr2 = const_cast <int&> (wr);

5

static cast

• Only allowed for conversions which the compiler can check

• Can’t static cast a pointer to a non-pointer

• Can’t use static cast to remove constness (or volatileness)

• Can’t static cast from a virtual base class

int x = 10;

int y = 20;

double d = static_cast <double> (x) / y;

int x = 10;

unsigned int y = static_cast <unsigned int> (x);

6

dynamic cast

• Run-time checked casts in an inheritance hierarchy

• Finding the beginning of an object

BaseClass* b;

DerivedClass* d = dynamic_cast <DerivedClass*> (b);

if (d) {

// cast was successful

} else {

// handle error

}

BaseClass& b;

// Throws if unsuccesful

DerivedClass& d = dynamic_cast <DerivedClass&> (b);

Class* c;

void* v = dynamic_cast <void*> (c); // Points to the beginning (most-derived object)

void* v2 = c; // Equivalent

7

reinterpret cast

• The most dangerous cast, implementation-dependent

• Practically any kind of conversion allowed

int x = 10;

char* str = reinterpret_cast <char*> (x);

Class1* c1;

Class2* c2 = reinterpret_cast <Class2*> (c1);

8

Avoiding casts

• There is usually a better way

• Understand why you are casting

• Understand the alternatives

9

Avoiding const cast

• const cast of a function argument

– Are you really trying to modify it?

• const cast of a member variable or this

– Should you use a mutable member?
– Should the method be non-const?
– Should you overload on constness?

• const cast of a local variable

• Why did you make it const to begin with?

• Majority of const casts can be traced to a design error

– Fix your design
– Work around other people’s designs

10

Avoiding static cast

• static cast in arithmetic conversions

– Are you using the correct integer and floating point types?
– Use a constructor instead for safe conversions:

int x = 1;

int y = 2;

float f1 = static_cast <float> (x) / y;

float f2 = float (x) / y;

• static cast from void* to a different pointer

11

Avoiding dynamic cast

• Use a common base class and virtual functions instead

• Let the compiler dispatch for you: compile-time checked and more efficient

• Use covariant return types to reduce the need for dynamic cast

class Base {

virtual Base* Clone ();

};

class Derived : public Base {

virtual Derived* Clone (); // Covariant return type

};

Derived* original = new Derived ();

Derived* copy = original.Clone (); // No cast needed

12

• Avoid chains of dynamic cast – usually indicative of a serious design problem

if (dynamic_cast <Type1*> (x)) {

// x is a pointer to Type1

} else if (dynamic_cast <Type2*> (x)) {

// x is a pointer to Type2

} else if ...

• Shorthand: declarations in if statements

if (Derived* d = dynamic_cast <Derived*> (b)) {

// d is a pointer to Derived

} else {

// d is not in scope

}

• Use dynamic cast to void* to get to the most derived object

Derived* d; // Class with a virtual function

void* memoryBlock = dynamic_cast <void*> (d);

13

Avoiding reinterpet cast

• Avoid it

• Use every other kind of cast before you resort to reinterpet cast

• Review your design before you resort to reinterpet cast

– Shouldn’t you be using void* instead?

14

